
Learn Python
Programming

What is Python Programming?

● Fastest Growing Language
● Very Easy to Learn(High Level Language) with clean Syntax
● Its flexible and versatile
● Tech Giants are using python for latest tech (Web Development, Data Analysis, Data

Science, GUI Applications, Game Design, web crawler/scraper, Machine Learning, AI
● Vast community of developers/programmers
● Huge open source repository
● Companies use python language: Google, Facebook, Instagram, Spotify, Quora, Netflix,

Dropbox, and more.

Why Learn
Python…?

Stack Overflow’s 2019 Most Wanted Programming Languages

Companies Using Python

Python

Used By

Industries

● Comes in picture in December 1989 as a hobby project by Guido van Rossum (a
dutch mathematician), the creator of the Python programming language. However,
the official release was in 1991.

● The name “python” was inspired from his most favourite and very famous tv show of
the time.(Monty Python's Flying Circus)

● BDFL of Python: He was the “Benevolent dictator for life” and step down by BDFL of
Python in july 2018

History of Python

History of Python

His(Guido van Rossum’s) goals for Python:

● Very easy to code, yet powerful in competitors.
● Should be open source, available to all, contribution from all, dynamic and powerful

community.
● High level language, comprehensible to all as plain English
● Applicable to day to day tasks, along with small functionalities.

Python 2 vs python3

Python 2 been popular among the developer for more than a decade, and still stays in the
software at certain companies.

On the other hand, python3 supports modern techniques like AI, ML, and has a vast set of
libraries for data science as well. Needless to say Python3 is supported by an unmatched
& huge Python developer's community.

Python Hierarchy

Version 3 (2008)Version 1 (1994)

V - 1.2 (1995) BeOpen (2000) V - 3.1 (2009)... V - 3.7 (2018)

V 1.5 (1997) V 1.5.5 (1997)
V - 3.5 (2015) V - 3.8 (2019)

V 1.6 (2000)
V - 3.6 (2016) V - 3.8.2 - (2020)

Version 2 (2000)

V - 2.1(2001)

V - 2.3 (2003)...

V - 2.6 (2008)

V - 2.7 (2010)

Python Installation - (Windows)

Python Installer

Download the Python installer
from the Download Python

Add Python to PATH

Please select the checkbox in
the installer option.

Check Python in
system

1. Goto to cmd and type
>python -version

2. Check python shell &
python IDLE

Pro Tip

Always download a version previous to the latest one. (More Stable Version)

https://www.python.org/downloads/

Python Installation - (Mac & Linux)

Python Installer

Download the Python installer
from the Download Python

Add Python to PATH

Please select the checkbox in
the installer option.

Check Python in
system

1. Goto to terminal &type
$python3 -version

2. Check python shell &
python IDLE

Pro Tip

Always download a version previous to the latest one. (More Stable Version)

Note: Python 2 version will be in your system by default, still need to install python 3

https://www.python.org/downloads/

What is a program?

Set of Instructions to perform a task

Example:
Perform addition, subtraction, etc.
Or
Print any message

Here task is to perform addition
or subtraction.

Write lines of code to give
particular instructions to system
to carry out the task

Sample Program

Addition

Example instructions
● Collect data from user
● Perform addition
● Send back the result to user (output)

A = 1
B = 2
Result= A + B
Send back Result

How Python works?
Python is an interpreted and compiled(behind the scene) language

01

02

03

04

Cpython (Compiler)

Convert the code into
bytecodes.
File: program.pyc
(Intermediate code)

Output

Machine code
instruction executed by
processor and give
result

PVM uses Interpreter

Python Virtual Machine
...process the code
Binary/Machine Code

Input

Python code
“program.py”
print(‘hello world’)

Python First Program - “Hello World”
print('Hello World')

print(‘Hello World’)
using print method passing string in single quotes(‘)
print(“Hello World”)
using print method passing string in double quotes(“)
print (“hello\n world”)
using print method with nextline string annotation(\n)
print(“hello\world”)

Python Comments- Single line

Working with Comments in python language -

we use comments to write some self notes or message for team…

it does not get read by the python interpreter

Print (“Hello World”)

print(“I am learning Python”)

print(‘hello world’)

print('Hello World!!!') # Yes you can comment one end of the statement as well

print('Hello World') # rest part is comment

Python Comments - Multiline

Multi-line Comment - delimiter (""") on each starting and end of the comment.

""

This would be a multiline comment

in Python that spans several lines and

describes your code, your day, or anything you want it to

"""

Indentation in Python

In Python, indentation is used to separate the block of code from one another.

Demo example #1:

<statement>
<If condition>

<block of code for if condition>
<statements for if condition>

Demo example #2:

<function>
<def name_of_function>

<block of code for function>
<statements for function>
<return / print>

Starting an if condition

Block of code for the if
condition(statements)

Starting/Declaring a function(def keyword)

Block of code for the function (statements)

integer - store and return integer value(eg. 1,2,3..)

Numbers

Python Data
Structure

float - store and return decimal value(eg. 1.2, 0.9...)

NoneType (None) - will return None value

Python Data Structure - Basic

complex - store and return imaginary value(eg. Pi = 3.14j)

Boolean (bool) - will return either True or False

Collections

Python Data Structure - Advanced

Mutable

Strings are arrays of bytes representing unicode characters

List- store and return list of different items under [item1,item2]

Tuples - a collection of objects which ordered and immutable

Set - is an unordered collection of items(elements are immutable)

Immutable

Dictionary - store and return dictionary with key value pair { key : value }

Everything is an Object in Python

<class ‘int’> represents integer type in python

<class ‘float’> represents float type in python

<class ‘bool’> represents boolean type in python

 Scalar Object Non - Scalar Object

<class ‘str’> represents string type in python

<class ‘list’> represents list type in python

<class ‘tuple’> represents tuple type in python

<class ‘dict’> represents dictionary type in python

Python Variables

Creating Variables: Variables are containers for storing data values in program.

Python has no code syntax for declaring a variable.

Variable is created the moment you first assign a value to it.

Python - Variables

Types of Data in python

int_id = 1001

float_price = 98.98

string_name = 'String'

bool_counter = True

print(int_id)

print(float_price)

print(string_name)

print(bool_counter)

print('Type of data variable - int_id:’, type(int_id))

print('Type of data variable - float_price:', type(float_price))

print('Type of data variable - string_name:', type(string_name))

print('Type of data variable - bool_counter:’, type(bool_counter))

Storing Values in Variable

pi = 3.1415

Left Side Right Side

‘=’ equals

Value to assigned
Variable name

 Assignment

Here, pi is a variable name and we
are storing some float value in it.

Giving name to Expressions(some math formula)

pi = 3.1415
radius_cm = 20
area_circle = (pi)*(radius_cm ** 2)
print(area_circle)

Express(variable with formula)

Abstrating math equation

Area π r 2

Changing Binding - restoring different in same variable

pi = 3.1415
radius_cm = 20
area_circle = (pi)*(radius_cm ** 2)
print(area_circle)
radius_cm = 25
area_circle = (pi)*(radius_cm ** 2)
print(area_circle)

Changing Radius (using same variable)

Checking Types of Variables - type()

Types of Data in python

int_id = 1001
float_price = 98.98
string_name = 'String'
bool_counter = True
print('-------------------name of variable------ ',' -----Type------','\t\t\t--Actual Value--')
print('Type of data variable - int_id: \t\t',type(int_id),'\t\t\tValue = ',int_id)
print('Type of data variable - float_price: \t\t',type(float_price),'\t\tValue = ',float_price)
print('Type of data variable - string_name: \t\t',type(string_name),'\t\t\tValue =
',string_name)
print('Type of data variable - bool_counter: \t\t',type(bool_counter),'\t\tValue =
',bool_counter)

Type Casting

x=”101”

To convert to integer- int(x) #output- 101

y=101

To convert to string- str(y) #output- “101”

z=”101.32”

To convert to float/decimal- float(z) #output- 101.32

int type in Python 3

Python has a integer type class which
is used to store integer type values

x = 1
print(type(x))
output: <class 'int'>

str (String) type in Python 3

Python has a String type class which
is used to store string type values

message = 'I am good'
print(type(x))
#output: <class 'str'>

Type Casting - integer to float and vice versa

Converting integer to float and vice versa

int_num = 1

print('Going to convert this identifier\' type\n from INT to >> FLOAT')

print('Type Before: ',type(int_num),'\nType After: ',type(float(int_num)))

#and vice versa

float_num = 1.0

print('Going to convert this identifier\' type\n from Float to >> Int')
print('Type Before: ',type(float_num),'\nType After: ',type(int(float_num)))

Type Casting - Int to string and vice versa

Int to string

int_num = 1

print('Going to convert this identifier\' type\n from INT to >> String')

print('Type Before: ',type(int_num),'\nType After: ',type(str(int_num)))

and vice versa

string_num = '1'

print('Going to convert this identifier\' type\n from String to >> Int')

print('Type Before: ',type(string_num),'\nType After: ',type(int(string_num)))

Type Conversion in Python - part 1

implicit Type Casting

num_int = 123
num_flo = 1.23
num_new = num_int + num_flo
print("datatype of num_int:",type(num_int))
print("datatype of num_flo:",type(num_flo))
print("Value of num_new:",num_new)
print("datatype of num_new:",type(num_new))

Type Conversion in Python - part 2

Let’s try to add number with a string

num_int = 123
num_str = "456"
print("Data type of num_int:",type(num_int))
print("Data type of num_str:",type(num_str))
print(num_int+num_str)

it will throw an error --to correct it, we use Explicit Type Conversion

Type Conversion in Python - Explicit Type Conversion

num_int = 123
num_str = "456"

print("Data type of num_int:",type(num_int))
print("Data type of num_str:",type(num_str))

type casting ‘num_str’ from string to integer (performing addition)
print(num_int + int(num_str))
print("and new type of generated number is",type(num_int + int(num_str)))

 # output:
 # Data type of num_int: <class 'int'>
 # Data type of num_str: <class 'str'>
 # 579
 # and new type of generated number is <class 'int'>

Naming Variables in Python

Do’s Don'ts

Can be of any length. Cannot start with a number, no
spacing within name

Combination of(a-z)(A-Z)(0-9) Keywords cannot be used as
identifiers

Can use _ (underscore) in
between

special symbols like !, @, #, $, %
etc

name_01,Name_01,a,b,c,d Var001, var001,
long_name really_long_name_identifier

@name, &new, 01number, 0string,0,1,2,3
True,False, try,def,from,while,if,in,global
01_not_valid_identifier, with space

Keywords & Identifiers in Python

There are 35 keywords in Python 3

False,await,else,import,pass,None,break,except,in,raise,True,class,finally,is,return,and,continu
e,for,lambda,try,as,def,from,nonlocal,while,assert,del,global,

Not,with,async,elif,if,or,yield

Identifiers:(How to name variables in python)

Print() Function

Print in Python - Part 1

#some different print example
simple printing
print('hello')

adding \n for printing value in next line
print('nextLine printing \nthis will be on next line')

print function with tab - TAB option (using tab space)
print('Printing with space \tThis text is using tab space')

#let's use + in print --
print('string1'+'string2')
print('string '*3) # print 'string' 3X times

Print in Python - Part 2

#more example
a,b = 1,2
print(a,b)
print(a,b,sep=',') # using separator attribute
print(192,168,1,0,sep=':') # we can use it to show ip address
print('hello',end='') # this will end the method by removing the default \n nextline to none
print('hello',end='\t')# this will end the method by removing the default \n nextline to \t tab space
print('=ending with tab space')

More on print - using “” & ‘’ (single/double quotes)

Python Accepts double quotes(" ") and single quotes(' ') in same manner
some basic example
print('A beautiful day !!!','--using single quotes')
print("A beautiful day !!!","--using double quotes")
plus we can use both in one statement
but, in different string of-course
print("A beautiful day !!!",'mixed--using single quotes in latter')
print('A beautiful day !!!',"mixed--using double quotes in latter")
how to print It's a beautiful day - single quote in the message itself
we simply use the double quotes - RIGHT!
print("It's a beautiful day",": - USING SINGLE quote INSIDE DOUBLE quotes")
then try to use DOUBLE quotes inside SINGLE quotes
we simply use the single quotes - RIGHT!
print('A "beautiful" day',': - USING DOUBLE quote INSIDE SINGLE quotes')
how can we use both in one message - to print: It's a "beautiful" day
TRICK #1 - USE FORWARD SLASH '\' >> It\'s
print('It\'s "beautiful" day',': - USING BOTH quotes INSIDE SINGLE quotes')
TRICK #2 >> \"beautiful\"
print("It's \"beautiful\" day",': - USING BOTH quotes INSIDE DOUBLE quotes')

Input from User in Python

User input Python file

(String value by default)

input()

Taking input in Python

input() function executes program flow will be stopped until an input from user.

The string or message shows on the screen to ask user to enter value is
optional i.e. the prompt, will be showed on the screen is optional.

When enter as input, the input function convert it into a string. if you enter an
integer value still input() function change it into a string. You need to
individually convert it into an integer in your code using typecasting.

Example: Taking input in Python

Program to check input

num_input = input ("Enter number :")
print(num_input)
string_input = input("Enter name : ")
print(string_input)

Printing type of input value with Values

print (f"type of number {type(num_input)}, and value is {num_input}")
print (f"type of string {type(string_input)}, and value is {string_input}")

Input in Python - with int and float type-casting

simple input method in python
default_type_variable = input("Input any type of data\n")
default type is string data
print("type of the data entered: ",type(default_type_variable)," Value = ",
default_type_variable)
defining type of data to be entered input
Integer Data - type casting
my_int_data = int(input("enter integer type data\n"))
print("type of the data entered: ",type(my_int_data)," Value = ", my_int_data)

Float Data - type casting
my_float_data = float(input("enter decimal/float type data\n"))
print("type of the data entered: ",type(my_float_data)," Value = ", my_float_data)

Operators

Operators are for manipulating the value of operands.

Example:
4 + 5 = 9.
Here, 4 and 5 = operands
+ = operator.

Types of Operator
Python language supports the following types of operators.

● Arithmetic Operators
● Comparison (Relational) Operators
● Assignment Operators
● Logical Operators
● Bitwise Operators
● Membership Operators
● Identity Operators

Python Operators

Operators are special symbols in Python.

It simply carry out arithmetic or logical computation for us.

“Operand” is value that the operator operates on.
2 + 3 = 5

Here, “+” is the “operator” which performs addition.
2 and 3 are the “operands” and 5 is the output of the operation.

Example: Python Arithmetic Operators

x = 15
y = 4
Output: x + y = 19
print('x + y =',x+y)
Output: x - y = 11
print('x - y =',x-y)
Output: x * y = 60
print('x * y =',x*y)
Output: x / y = 3.75
print('x / y =',x/y)
Output: x // y = 3
print('x // y =',x//y)
Output: x ** y = 50625
print('x ** y =',x**y)

Comparison Operators

Comparison operators are used to compare values. It returns either True or False
according to the condition.

x = 10
y = 12
Output: x > y is False
print('x > y is',x>y)
Output: x < y is True
print('x < y is',x<y)
Output: x == y is False
print('x == y is',x==y)
Output: x != y is True
print('x != y is',x!=y)
Output: x >= y is False
print('x >= y is',x>=y)
Output: x <= y is True
print('x <= y is',x<=y)

Logical Operators - and, or, not

T/F and F/T =

True and True True

True and False False

False and True False

False and False False

T/F or F/T =

True or True True

True or False True

False or True True

False or False False

T/F not =

True not True

False not False

Logical Operator - ‘and’ Logical Operator - ‘or’ Logical Operator - ‘not’

Example #1 : Logical Operators

Logical operators are the and, or, not operators.

x = True

y = False

print('x and y is',x and y)

print('x or y is',x or y)

print('not x is',not x)

Example #2 : Logical Operators

Logical Operation
print('Using Logical operator - "and"\n--')
print(f'True and False:= {True and False}')
print(f'True and True:= {True and True}')
print(f'False and True:= {False and True}')
print(f'False and False:= {False and False}')

print('Using Logical operator - "or"\n--')

print(f'True or False:= {True or False}')
print(f'True or True:= {True or True}')
print(f'False or True:= {False or True}')
print(f'False or False:= {False or False}')

Bitwise Operators

Bitwise operators treat the operands strings of binary digits.

x = 70 # 70 = 1000110
y = 23 # 23 = 0010111
z = 0
z = x & y # Binary AND
print (f"Binary AND, z = { z }")
z = x | y # Binary OR
print (f"Binary OR, z = { z }")
z = x ^ y # Binary XOR
print (f"Binary XOR, z = { z }")
z = ~x # Binary Ones Complement
print (f"inary Ones Complement, z = { z }")
z = x << 2 # Binary Left Shift
print (f"Binary Left Shift, z = { z }")
z = x >> 2 # Binary Right Shift
print (f"Binary Right Shift, z = { z }")

Assignment Operators

Assignment operators(mathematical operator)in Python.
x ,y ,z = 26, 18, 0
z = x + b
print('z = x + y assigns value of x + y into z ')
print (f"Value = z is { z }")
z += a
print('z += x is equivalent to z = z + x ')
print (f"Value = z is { z }")
z *= a
print('z *= x is equivalent to z = z * a')
print (f"Value = z is { z }")
z /= x
print('z /= x is equivalent to z = z / a')
print (f"Value = z is { z }")
z = 2
z %= a
print('z %= x is equivalent to z = z % x ')
print (f"Value = z is { z }")

z **= a
print('z **= x is equivalent to z = z ** x
')
print (f"Value = z is { z }")
z //= a
print('z //= x is equivalent to z = z // x
')
print (f"Value = z is { z }")

= VS == (assign vs equal)

The = is a simple assignment operator.
It assigns values from right to the left.

x = 5
a= “python”
print(x)
Output 5
(Note- the value must be on the right side of the equal sign, 4= x would throw an error)

 == is for checking the values of two operands are equal or not.
If yes, then True, If no, then False

x= 5
a= 5
x==a
print(x==a)
#output- true

Assignment (=)

Equal (==)

Membership operators in Python.
(in) and (not in) Use to check the presence of element in the python sequence (eg. string,
list, tuple, set and dictionary)

x = 'Hello world'
y = {1:'a',2:'b'}

Output: True
print('H' in x)

Output: True
print('hello' not in x)

Output: True
print(1 in y)

Output: False
print('a' in y)

Membership Operator

Control Flow

Control flow in programming
language is the way of making
decision for the system execution of a
certain set of instructions, taking
feasible conditions in account.

Feasible conditions based to the fact
of the concept/behaviour of the
program. Either it return a TRUE or a
FALSE.

For example, pick all the odd numbers
from the given list...if number divided
by 2 gives remainder 1, then
according to flow, the number is odd.

Types of Control Flow

Sr.No. Statement & Description

1 if statements

Using an if… statement will return either True or False.(program block will execute only if True)

2 if...else statements

Using an if...else statement in program gives us 2 part execution of 2 programming blocks.
(first for TRUE and second for FALSE)

3 if - elif - else

Now, we can put (n) number of coding block in our program using ELIF as many times we want.
(elif in python means else if)

Example: if (1) >>print(‘one’), elif (2) >>print(‘two’), elif (3) >>print(‘three’), … , and so on.

https://www.tutorialspoint.com/python/python_if_statement.htm
https://www.tutorialspoint.com/python/python_if_else.htm

CONTROL FLOW - Branching

if<condition>:
<expression>
<expression>
• • •

if<condition>:
<expression>
<expression>
• • •

else: <expression>
<expression>
• • •

● <condition> has a value True or False
● evaluate expressions in that block if <condition> is True

if<condition>:
<expression>
<expression>
• • •

elif <condition>:
<expression>
<expression>
• • •

else: <expression>
<expression>
• • •

If statement

In this example, we use two variables, a and b, using if statement here
we can find which number is greater or smaller than other.

a = 33

b = 200

if b > a:

 print("b is greater than a")

If ..else statement

Extending the previous example, here we are checking both ways, using
the else statement as well.

a = 33

b = 200

if b > a:

 print("b is greater than a")

else:

 print(“a is greater than b”)

Example #1 : If-else

salary=int(input("Enter the Salary : "))

if salary >= 50000:

 print("20% Bonus")

else:

 print("10% Bonus")

Here, the salary value is being
checked, and

(condition if)

if it is greater than or equal to
50k, you’ll get bonus of 20%.

(condition else)

or else, you’ll get bonus of 10%.

Elif Statements

The elif keyword is pythons way of saying "if the previous conditions were not true, then
try this condition".

a = 33

b = 33

if b > a:

 print("b is greater than a")

elif a == b:

 print("a and b are equal")

 In Python

elif = else + if

elif ..else Statement

The else keyword catches anything which isn't caught by the preceding conditions.

a = 200

b = 33

if b > a:

 print("b is greater than a")

elif a == b:

 print("a and b are equal")

else:

 print("a is greater than b")

Example #2 : If-elif-else

marks=int(input("Enter the Marks : "))

if marks >= 90:

 print("Grade A")

elif marks >= 80:

 print("Grade B")

elif marks >= 70:

 print("Grade C")

elif marks >= 60:

 print("Grade D")

else:

 print("Grade F")

Example #3 : Simple Calculator

building a simple calculator
num_1 = float(input('Enter First number\n'))
num_2 = float(input('Enter Second number\n'))
taking float type for performing arithmetic operations
math_operator = input(
 'please enter symbol\nFor Addition => enter +\nFor Subtraction => enter -\nFor Multiplication =>
enter *\nFor Division => enter /\n\n\n')

if math_operator == '+':
 print('Addition Result:\nnum_1\tnum_2\n', num_1,
 math_operator, num_2, '\n---------------\nAnswer\t', num_1 + num_2)
elif math_operator == '-':
 print('Subtraction Result:\nnum_1\tnum_2\n', num_1,
 math_operator, num_2, '\n---------------\nAnswer\t', num_1 - num_2)
elif math_operator == '*':
 print('Multiplication Result:\nnum_1\tnum_2\n', num_1,
 math_operator, num_2, '\n---------------\nAnswer\t', num_1 * num_2)
elif math_operator == '/':
 print('Division Result:\nnum_1\tnum_2\n', num_1,
 math_operator, num_2, '\n---------------\nAnswer\t', num_1 / num_2)
else:
 print('wrong entry')

Indentation

Tab Spaces are used for indentation in Python. When we use methods or any statement(looping or
conditional), tab-space or indentation is provided by default
building a simple calculator
num_1 = float(input('Enter First number\n'))
num_2 = float(input('Enter Second number\n'))
taking float type for performing arithmetic operations
math_operator = input(
 'please enter symbol\nFor Addition => enter +\nFor Subtraction => enter -\nFor Multiplication
=> enter *\nFor Division => enter /\n\n\n')

if math_operator == '+':
 print('Addition Result:\nnum_1\tnum_2\n', num_1,
 math_operator, num_2, '\n---------------\nAnswer\t', num_1 + num_2)
elif math_operator == '-':
 print('Subtraction Result:\nnum_1\tnum_2\n', num_1,
 math_operator, num_2, '\n---------------\nAnswer\t', num_1 - num_2)
elif math_operator == '*':
 print('Multiplication Result:\nnum_1\tnum_2\n', num_1,
 math_operator, num_2, '\n---------------\nAnswer\t', num_1 * num_2)
elif math_operator == '/':
 print('Division Result:\nnum_1\tnum_2\n', num_1,
 math_operator, num_2, '\n---------------\nAnswer\t', num_1 / num_2)
else:
 print('wrong entry')

Looping Statements
in Python

Looping is programming means
repeating a certain task for certain
occurrence

However, a looping statement consist
three important parts.

1. Start Condition
2. Stop Condition
3. Increment/Decrement

Control Flow: while LOOPS

While <Condition>:

<expression>

<expression>

● <condition> evaluates to a boolean
● if<condition> is True, do all the steps inside the white code block
● Check<condition>again
● Repeat until <condition> is False

How to print name 500 times ?

#while loop in Python

counter = 0
while counter<=400:

print(“my name is Arnav”)
counter = counter + 1

Python For Loops

For loops can be used for iterating(looping) over a sequence.

A sequence can be(list, tuple, dictionary, set and, string).

#Python program to print name of fruits in list using for loop
fruits = ["apple", "banana", "cherry"]
for x in fruits:
 print(x)
#output- apple, banana, cherry

Example: Python For Loops

For loops can be used for iterating(looping) over a sequence.

A sequence can be(list, tuple, dictionary, set and, string).

Using the range() function in for loop

for loop in python using range()

for counter in range(15):
 print(“my name is Arnav”)

Range (start,stop,step)

Range() is used parameter/argument values for starting and stopping point.

Step is used to give increment/decrement to the starting value each time, till it reaches the
stopping value.

mysum =0
for i in range (1,5,2)

mysum+=i
print(mysum)

#Output- 4

Start- Starting Value(Default 0)

Stop- Stopping Value

Step- increment/decrement.
(Default 1 increment)

Example: “For” Loops with “range()” Function

For loops can be used for iterating(looping) over a sequence.

range(5) means elements [0,1,2,3,4]

for x in range(5):
 print(x)
Prints out the numbers 0,1,2,3,4

#range(initial, final, step)

for x in range(3, 6):
 print(x)
Prints out 3,4,5

for x in range(3, 8, 2):
 print(x)
Prints out 3,5,7

Infinite Loops

[Caution: Press CTRL + C, or close the terminal/program to exit loop]

Having fun the infinite looping using while loop
x= 1
while(x==1):
 print('python says Hello!!!’) Press Ctrl + C to exit infinite loop')

Nested Loops

Loops inside Loop - multiplication tables(1-10 x 10)
nested Loop

for i in range(1,11):
 for j in range(1,11):
 mult_table = i*j
 print(f'{mult_table}',end=' ')
 print(f'\tTable of {i} x 10:')

<for loop condition>
...
…statements
<for loop condition>

…statements
…

(Nested For Loop)

Looping and Conditional statement - Print all even/odd
numbers between 1-100

Print all even/odd numbers between 1-100 - using 'FOR' loop
for i in range(1,101): # looping from 1-100 numbers

print(i)
 chk = i % 2 # ‘chk’ variable stores the mod value (i modular division 2)
 if chk == 0: # checking condition for even number
 print(i,"is an even number")
 elif chk == 1: # checking condition for odd number
 print(i,'is an odd number')

for VS while LOOPS

For Loops

● Know number of iterations
● Can end early via break
● Uses a counter
● Can rewrite a for loop using a while

loop

While Loops

● Unbounded number of iterations
● Can end early via break
● Can use a counter but must initialize

before loop and increment it inside
loop

● May not be able to rewrite a while loop
using a for loop

Break Statement

Break STATEMENT

● Immediately exits whatever loops it is in
● Skips remaining expression in code block
● Exists only innermost loop!

While <condition_1>:
While <condition_2>:

<expression_a>
Break
<expression_b>
<expression_c>

Example#1: Continue and Break

Continue statement will ignore the in the loop
print(f'This will skip number \'8\' from the series
0-9')
for count in range(10):
 if count == 8:# when 8 comes in loop
 continue
 print(count,end=':')

Break statement will ignore the in the loop
print(f'This will skip all number after \'7\'
from the series 0-9')
for count in range(10):
 if count == 7: # when 7 comes in loop
 break
 print(count,end=':')

Example#2: Continue and Break

for x in “door”:
 if x == ‘o’:
 continue
 print(“the current letter is”, x)
output; the current letter is d
 The current letter is r

for x in “door”:
 if x == ‘o’:
 break
 print(“the current letter is”, x)
#output; the current letter is d

continue break

Pass in python means to do nothing - (used to come out of block of code/statement)

Example: Division by zero

<if divided by zero>
<custom error message>
pass

pass in Python

10

0
Error

Will prevent the error in the flow of program

pass in Python

#Example#1 of pass statement for function

def do_nothing_function():
pass

#Example#2 Pass

pass statement in python
print('Pass Statement in python, using which leads to no operation to the program statement')
print('example of division function, will use pass when divisor = 0\n')
def divide_two_number(dividend,divisor):
 if divisor == 0:
 print('divisor cannot be zero - program will end here')
 pass
 else:
 print(f'Result of division: {dividend/divisor}')

calling the function - passing divisor = 0
divide_two_number(10,0)

